The Shishi Manual

for version 0.0.3, 17 August 2003

Simon Josefsson (bug-shishi@josefsson.org)

mailto:bug-shishi@josefsson.org

This is The Shishi Manual, last updated 17 August 2003, for Version 0.0.3 of Shishi.
Copyright (©) 2002, 2003 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

Table of Contents

1 Introduction............cciiiiiinnnennn.. 1
1.1 Getting Startedo 1

1.2 Features and Status 1

1.3 OVeIVIEW ..ot 2

1.4 Cryptographic Overview 4

1.5 Supported Platforms 6

1.6 Bug Reports....... ... 6

2 UserManualcii... 8
3 Administration Manual 13
4 Programming Manual..................... 14
4.1 Preparation..............oiiiii 14

4.1.1 Header......... ... 14

4.1.2 Initialization 14

4.1.3 Version Check................ 14

4.1.4 Building the source 15

4.2 Initialization Functions 15

4.3 Ticket Set Functions. 18

4.4 AP-REQ and AP-REP Functions........................ 22

4.5 SAFE and PRIV Functions 34

4.6 Ticket Functions 38

4.7 AS Functionsi 40

4.8 TGS FunctionsS.oi ... 44

4.9 Ticket (ASN.1) Functions.................cooieeii.... 47

410 AS/TGS Functions...................iiiiiii... 48

4.11 Authenticator Functions 61

4.12 Cryptographic Functions.................... 65

4.13 Utility Functions......... 76

4.14 FError Handling............ i, 78

4.14.1 Errorvalues...............c.iiriiiiiiiiiii... 78

4.14.2 Error stringsi i 79

4.15 Examples.. ... 80

4.16 Generic Security Service i 80

5 Acknowledgements........................ 82
Appendix A Copying This Manual 83
A.1 GNU Free Documentation License 83

A.1.1 ADDENDUM: How to use this License for your
documents i 89

Appendix B GNU GENERAL PUBLIC
LICENSE ... 90

B.1 Preamble....... 90

B.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION 90
B.3 How to Apply These Terms to Your New Programs....... 95
Concept Indexiiiiiiiinnn.. 96

Function and DataIndex 97

ii

Chapter 1: Introduction 1

1 Introduction

Shishi implements the RFC 1510 network security system, also known as Kerberos 5.

1.1 Getting Started

This manual documents the Shishi application and library programming interface. All
commands, functions and data types provided by Shishi are explained.

The reader is assumed to possess basic familiarity with network security and the RFC
1510 security system.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features and Status

Shishi might have a couple of advantages over other packages doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License (see Appendix B [Copying], page 90).

It’s thread-safe
The library uses no global variables.

It’s internationalized
It handles non-ASCII username and passwords and user visible strings used in
the library (error messages) can be translated into the users’ language.

It’s portable
It should work on all Unix like operating systems, including Windows.

Shishi is far from feature complete, it is not even a full RFC 1510 implementation
yet. However, some basic functionality is implemented. A few implemented feature are
mentioned below.

e Initial authentication (AS) from raw key or password. This step is typically used to
acquire a ticket granting ticket and, less commonly, a server ticket.

e Subsequent authentication (TGS). This step is typically used to acquire a server ticket,
by authenticating yourself using the ticket granting ticket.

e Client-Server authentication (AP). This step is used by clients and servers to prove to
each other who they are, using negotiated tickets.

e Integrity protected communication (SAFE). This step is used by clients and servers to
exchange integrity protected data with each other. The key is typically agreed on using
the Client-Server authentication step.

Chapter 1: Introduction 2

an
on

Ticket cache, supporting multiple principals and realms. As tickets have a life time of
typically several hours, they are managed in disk files. There can be multiple ticket
caches, and each ticket cache can store tickets for multiple clients (users), servers,
encryption types, etc. Functionality is provided for locating the proper ticket for every
use.

Most standard cryptographic primitives. The believed most secure algorithms are
supported (see Section 1.4 [Cryptographic Overview]|, page 4).

Telnet client and server. This is used to remotely login to other machines, after au-
thenticating yourself with a ticket.

PAM module. This is used to login locally on a machine.
KDC addresses located using DNS SRV RRs.
The following table summarize what the current objectives are (i.e., the todo list) and

estimate on how long it will take to implement the feature. If you like to start working
anything, please let me know so work duplication can be avoided.

Pre-authentication support (week).
Cross-realm support (week).
Session keys in AP (week).
PKINIT (use libksba, weeks)

Finish GSSAPI support via GPL GSS (weeks) Shishi will not support GSS, but a
separate project “GPL GSS” is under way to produce a generic GSS implementation,
and it will use Shishi to implement the Kerberos 5 mechanism.

Port to cyclone (cyclone need to mature first)

Modularize ASN.1 library so it can be replaced (days). Almost done, all ASN.1 func-
tionality is found in lib/asnl.c.

Modularize Crypto library so it can be replaced (days). Nettle and libgerypt are
currently supported, but not via an abstract interface. All crypto operations has been
isolated into lib/crypto*.c.

KDC (initiated, weeks)

Set/Change password protocol (weeks?)
Port applications to use Shishi (indefinite)
Improve documentation

Improve internationalization

Add AP-REQ replay cache (week).

1.3 Overview

This section describes RFC 1510 from a protocol point of view!.

Kerberos provides a means of verifying the identities of principals, (e.g., a workstation

user or a network server) on an open (unprotected) network. This is accomplished without

1

The text is a lightly adapted version of the introduction section from RFC 1510 by J. Kohl and C.
Neuman, September 1993, unclear copyrights, but presumably owned by The Internet Society.

Chapter 1: Introduction 3

relying on authentication by the host operating system, without basing trust on host ad-
dresses, without requiring physical security of all the hosts on the network, and under the
assumption that packets traveling along the network can be read, modified, and inserted at
will. (Note, however, that many applications use Kerberos’ functions only upon the initia-
tion of a stream-based network connection, and assume the absence of any "hijackers" who
might subvert such a connection. Such use implicitly trusts the host addresses involved.)
Kerberos performs authentication under these conditions as a trusted third- party authen-
tication service by using conventional cryptography, i.e., shared secret key. (shared secret
key - Secret and private are often used interchangeably in the literature. In our usage, it
takes two (or more) to share a secret, thus a shared DES key is a secret key. Something is
only private when no one but its owner knows it. Thus, in public key cryptosystems, one
has a public and a private key.)

The authentication process proceeds as follows: A client sends a request to the authen-
tication server (AS) requesting "credentials" for a given server. The AS responds with
these credentials, encrypted in the client’s key. The credentials consist of 1) a "ticket" for
the server and 2) a temporary encryption key (often called a "session key"). The client
transmits the ticket (which contains the client’s identity and a copy of the session key, all
encrypted in the server’s key) to the server. The session key (now shared by the client and
server) is used to authenticate the client, and may optionally be used to authenticate the
server. It may also be used to encrypt further communication between the two parties or
to exchange a separate sub-session key to be used to encrypt further communication.

The implementation consists of one or more authentication servers running on physi-
cally secure hosts. The authentication servers maintain a database of principals (i.e., users
and servers) and their secret keys. Code libraries provide encryption and implement the
Kerberos protocol. In order to add authentication to its transactions, a typical network
application adds one or two calls to the Kerberos library, which results in the transmission
of the necessary messages to achieve authentication.

The Kerberos protocol consists of several sub-protocols (or exchanges). There are two
methods by which a client can ask a Kerberos server for credentials. In the first approach,
the client sends a cleartext request for a ticket for the desired server to the AS. The reply
is sent encrypted in the client’s secret key. Usually this request is for a ticket-granting
ticket (TGT) which can later be used with the ticket-granting server (TGS). In the second
method, the client sends a request to the TGS. The client sends the TGT to the TGS in the
same manner as if it were contacting any other application server which requires Kerberos
credentials. The reply is encrypted in the session key from the TGT.

Once obtained, credentials may be used to verify the identity of the principals in a
transaction, to ensure the integrity of messages exchanged between them, or to preserve
privacy of the messages. The application is free to choose whatever protection may be
necessary.

To verify the identities of the principals in a transaction, the client transmits the ticket
to the server. Since the ticket is sent "in the clear" (parts of it are encrypted, but this
encryption doesn’t thwart replay) and might be intercepted and reused by an attacker,
additional information is sent to prove that the message was originated by the principal to
whom the ticket was issued. This information (called the authenticator) is encrypted in the
session key, and includes a timestamp. The timestamp proves that the message was recently
generated and is not a replay. Encrypting the authenticator in the session key proves that

Chapter 1: Introduction 4

it was generated by a party possessing the session key. Since no one except the requesting
principal and the server know the session key (it is never sent over the network in the clear)
this guarantees the identity of the client.

The integrity of the messages exchanged between principals can also be guaranteed
using the session key (passed in the ticket and contained in the credentials). This approach
provides detection of both replay attacks and message stream modification attacks. It is
accomplished by generating and transmitting a collision-proof checksum (elsewhere called
a hash or digest function) of the client’s message, keyed with the session key. Privacy and
integrity of the messages exchanged between principals can be secured by encrypting the
data to be passed using the session key passed in the ticket, and contained in the credentials.

1.4 Cryptographic Overview

Shishi implements several of the standard cryptographic primitives. Here are the names
of the supported encryption suites, with some notes on their status and there associated
checksum suite. They are ordered by increased security as perceived by the author.

NULL

NULL is a dummy encryption suite for debugging. Encryption and decryption
are identity functions. No integrity protection. It is weak. It is associated with
the NULL checksum.

des-cbc-crc
des-cbc-crc is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode. The keys can be derived from passwords by an obscure
application specific algorithm. Data is integrity protected with an unkeyed but
encrypted CRC32-like checksum. It is weak. It is associated with the rsa-md5-
des checksum.

des-cbc-md4
des-cbc-md4 is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode. The keys can be derived from passwords by an obscure
application specific algorithm. Data is integrity protected with an unkeyed
but encrypted MD4 hash. It is weak. It is associated with the rsa-md4-des
checksum.

des-cbc-mdb
des-cbc-md5 is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode. The keys can be derived from passwords by an obscure
application specific algorithm. Data is integrity protected with an unkeyed
but encrypted MDb5 hash. It is weak. It is associated with the rsa-md5-des
checksum. This is the strongest RFC 1510 interoperable mechanism.

des3-cbc-shal-kd
des3-cbc-shal-kd is DES encryption and decryption with three 56 bit keys
(effective key size 112 bits) and 8 byte blocks in CBC mode. The keys can
be derived from passwords by a algorithm based on the paper "A Better Key
Schedule For DES-like Ciphers"? by Uri Blumenthal and Steven M. Bellovin

2 http://www.research.att.com/~smb/papers/ides.pdf

Chapter 1: Introduction 5

(it is not clear if the algorithm, and the way it is used, is used by any other
protocols, although it seems unlikely). Data is integrity protected with a keyed
(HMAC) SHA1 hash. It has no security proof, but is assumed to provide
adequate security in the sense that knowledge on how to crack it is not known
to the public. It is associated with the hmac-shal-des3-kd checksum.

aes128-cts-hmac-shal-96

aes2b56-cts-hmac-shal-96.
aes128-cts-hmac-shal-96 and aes256-cts-hmac-shal-96 is AES encryption
and decryption with 128 bit and 256 bit key, respectively, and 16 byte blocks in
CBC mode with Cipher Text Stealing. Cipher Text Stealing means data length
of encrypted data is preserved (pure CBC add up to 7 pad characters). The
keys can be derived from passwords with RSA Laboratories PKCS#5 Password
Based Key Derivation Function 2%, which is allegedly provably secure in a ran-
dom oracle model. Data is integrity protected with a keyed (HMAC) SHA1
hash truncated to 96 bits. There is no security proof, but the schemes are as-
sumed to provide good security, but has, as AES itself, yet to receive the test
of time. It is associated with the hmac-shal-96-aes128 and hmac-shal-96-
aes256 checksums, respectively.

The protocol do not include any way to negotiate which checksum mechanisms to use,
so in most cases the associated checksum will be used. However, checksum mechanisms can
be used with other encryption mechanisms, as long as they are compatible in terms of key
format etc. Here are the names of the supported checksum mechanisms, with some notes
on their status and the compatible encryption mechanisms. They are ordered by increased
security as perceived by the author.

NULL

NULL is a dummy checksum suite for debugging. It provides no integrity. It is
weak. It is compatible with the NULL encryption mechanism.

rsa-md4-des
rsa-md4-des is a DES CBC encryption of one block of random data and a
unkeyed MD4 hash computed over the random data and the message to integrity
protect. The key used is derived from the base protocol key by XOR with a
constant. It is weak. It is compatible with the des-cbc-crc, des-cbc-md4,
des-cbc-md5 encryption mechanisms.

rsa-md5-des
rsa-md5-des is a DES CBC encryption of one block of random data and a
unkeyed MD5 hash computed over the random data and the message to integrity
protect. The key used is derived from the base protocol key by XOR with a
constant. It is weak. It is compatible with the des-cbc-crc, des-cbc-md4,
des-cbc-md5 encryption mechanisms.

hmac-shal-des3-kd
hmac-shal-des3-kd is a keyed (HMAC) SHA1 hash computed over the mes-
sage. The key is derived from the base protocol by the simplified key derivation

3 http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/

Chapter 1: Introduction 6

function (similar to the password key derivation functions of des3-cbc-shal-
kd). It has no security proof, but is assumed to provide good security. It is
compatible with the des3-cbc-shal-kd encryption mechanism.

hmac-shal-96-aes128
hmac-shal-96-aes256

hmac-shal-96-aes* are keyed (HMAC) SHA1 hashes computed over the mes-
sage and then truncated to 96 bits. The key is derived from the base protocol
by the simplified key derivation function (similar to the password key derivation
functions of des3-cbc-shal-kd). It has no security proof, but is assumed to
provide good security. It is compatible with the des3-cbc-shal-kd encryption
mechanism.

1.5 Supported Platforms

Shishi has at some point in time been tested on the following platforms.

1.

10.

11.

Debian GNU/Linux 3.0r0 (Woody)

GCC 2.95.4 and GNU Make. alphaev67-unknown-linux-gnu, alphaev6-unknown-linux-
gnu, hppa64-unknown-linux-gnu, i686-pc-linux-gnu, ia64-unknown-linux-gnu.
Tru64 UNIX

Tru64 UNIX C compiler and Tru64 Make. alphaev68-dec-osf5.1.

SuSE Linux 7.1

GCC 2.96 and GNU Make. alphaev67-unknown-linux-gnu.

SuSE Linux 7.2a

GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

RedHat Linux 7.2

GCC 2.96 and GNU Make. i686-pc-linux-gnu.

RedHat Linux 8.0

GCC 3.2 and GNU Make. i686-pc-linux-gnu.

Red Hat Advanced Server 2.1

GCC 2.96 and GNU Make. ia64-unknown-linux-gnu (Intel Madison).

SUN Solaris 2.8

Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

NetBSD 1.6

GCC 2.95.3 and GNU Make. alpha-unknown-netbsd1.6, i386-unknown-netbsdelf1.6.
OpenBSD 3.1

GCC 2.95.3 and GNU Make. i386-unknown-openbsd3.1.

FreeBSD 4.7

GCC 2.95.4 and GNU Make. alpha-unknown-freebsd4.7, i386-unknown-freebsd4.7.

If you use Shishi on, or port Shishi to, a new platform please report it to the author (see

Section 1.6 [Bug Reports], page 7).

Chapter 1: Introduction 7

1.6 Bug Reports

If you think you have found a bug in Shishi, please investigate it and report it.

e Please make sure that the bug is really in Shishi, and preferably also check that it
hasn’t already been fixed in the latest version.

e You have to send us a test case that makes it possible for us to reproduce the bug.

e You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-shishi@josefsson.org’

Chapter 2: User Manual 8

2 User Manual

Usually Shishi interacts with you to get some initial authentication information like a pass-
word, and then contacts a server to receive a so called ticket granting ticket. From now on,
you rarely interacts with Shishi directly. Applications that needs security services instruct
the Shishi library to use the ticket granting ticket to get new tickets for various servers. An
example could be if you log on to a host remotely via ‘telnet’. The host usually requires
authentication before permitting you in. The ‘telnet’ client uses the ticket granting ticket
to get a ticket for the server, and then use this ticket to authenticate you against the server
(typically the server is also authenticated to you). You perform the initial authentication
by typing shishi at the prompt. Sometimes it is necessary to supply options telling Shishi
what your principal name (user name in the Kerberos realm) or realm is. In the example,
I specify the client name simon@JOSEFSSON. ORG.

(" 0
$ shishi simon@JOSEFSSON.ORG

Enter password for ‘jas@JOSEFSSON.ORG’:

jas@JOSEFSSON.ORG:

Authtime: Fri Aug 15 04:44:49 2003

Endtime: Fri Aug 15 05:01:29 2003

Server: krbtgt/JOSEFSSON.ORG key des3-cbc-shal-kd (16)

Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16
Ticket flags: INITIAL (512)

$

-)

As you can see, Shishi also prints a short description of the ticket received.

A logical next step is to display all tickets you have received (by the way, the tickets are
usually stored as text in ‘~/.shishi/tickets’). This is achieved by typing shishi --1list.

Chapter 2: User Manual 9

()

$ shishi --list
Tickets in ‘/home/jas/.shishi/tickets’:

jas@JOSEFSSON.ORG:

Authtime: Fri Aug 15 04:49:46 2003

Endtime: Fri Aug 15 05:06:26 2003

Server: krbtgt/JOSEFSSON.ORG key des-cbc-md5 (3)
Ticket key: des-cbc-md5 (3) protected by des-cbc-md5 (3)

Ticket flags: INITIAL (512)

jas@JOSEFSSON.ORG:

Authtime: Fri Aug 15 04:49:46 2003
Starttime: Fri Aug 15 04:49:49 2003
Endtime: Fri Aug 15 05:06:26 2003
Server: host/latte.josefsson.org key des-cbc-md5 (3)
Ticket key: des-cbc-md5 (3) protected by des-cbc-md5 (3)

2 tickets found.

$
N J

As you can see, I had a ticket for the server ‘host/latte.josefsson.org’ which was
generated by ‘telnet’:ing to that host.

If, for some reason, you want to manually get a ticket for a specific server, you can use
the shishi --server-name command. Normally, however, the application that uses Shishi
will take care of getting a ticket for the appropriate server, so you normally wouldn’t need
this command.

(N
$ shishi --server-name=user/billg --encryption-type=des-cbc-md4
jas@JOSEFSSON.ORG:

Authtime: Fri Aug 15 04:49:46 2003

Starttime: Fri Aug 15 04:54:33 2003

Endtime: Fri Aug 15 05:06:26 2003

Server: user/billg key des-cbc-md4 (2)

Ticket key: des-cbc-md4 (2) protected by des-cbc-md5 (3)

$

- J

As you can see, I acquired a ticket for ‘user/billg’ with a ‘des-cbc-md4’ (see Section 1.4
[Cryptographic Overview|, page 4) encryption key specified with the ‘--encryption-type’
parameter.

To wrap up this introduction, lets see how you can remove tickets. You may want to do
this if you leave your terminal for lunch or similar, and don’t want someone to be able to
copy the file and then use your credentials. Note that this only destroy the tickets locally,
it does not contact any server and tell it that these credentials are no longer valid. So if
someone stole your ticket file, you must contact your administrator and have them reset
your account, simply using this parameter is not sufficient.

Chapter 2: User Manual

10

-

$

$ shishi --server-name=imap/latte.josefsson.org --destroy
1 ticket removed.
$ shishi --server-name=foobar --destroy
No tickets removed.
$ shishi --destroy
3 tickets removed.

Below follows a list of all parameters.

Mandatory or optional arguments to long options are also mandatory or optional for any
corresponding short options.

Usage: shishi
or: shishi
or: shishi
or: shishi
or: shishi

—--client—-name=NAME

[OPTION...
[OPTION...
[OPTION...
[OPTION. ..
[OPTION. ..

-d, --destroy

-e, —-—endtime=STRING

—_ e e

[NAME] [OPTION...]

--list [--server-name=NAME]
--destroy [--server-name=NAME]
--crypto [CRYPTO-OPTION...]

Client name. Default is login username. Only forf]
AS.

Destroy tickets in local cache, subject to
--server-name limiting.

Specify when ticket validity should expire. Thel}
time syntax may be relative (to the start time),Jj
such as "20 hours", or absolute, such as
"2001-02-03 04:05:06 CET". The default is 8 hoursll
after the start time.

-E, -—encryption-type=ETYPE, [ETYPE...]

—-—force-as

--force-tgs

--key-value=KEY

-1, --list

—--password=PASSWORD

—--realm=REALM

—--renew-til1=STRING

Encryption types to use. ETYPE is either
registered name or integer.

Force AS mode. Default is to use TGS iff a TGT isH
found.

Force TGS mode. Default is to use TGS iff a TGT is|j
found.

Cipher key to decrypt response (discouraged).|]

List tickets in local cache, subject to
--server-name limiting.

Password to decrypt response (discouraged). Onlyl]
for AS.

Realm of server. Default is DNS domain of localll
host. For AS, this also indicates realm of client.l

Specify renewable life of ticket. Implies
--renewable. Accepts same time syntax as
--endtime. If --renewable is specified, thel]

Chapter 2: User Manual

—--renewable
-R, --renew

11

default is 1 week after the start time.

Get a renewable ticket.

Renew ticket. Use --server-name to specify
ticket, default is the most recent renewablel]
ticket granting ticket for the default realm.}}

--server=[FAMILY:]ADDRESS:SERVICE/TYPE

--server—-name=NAME

-8, —-—-starttime=STRING

--ticket-granter=NAME

Send all requests to HOST instead of using normall]
logic to locate KDC addresses (discouraged) .|}
Server name. Default is "krbtgt/REALM" where REALMJ]
is server realm (see --realm).

Specify when ticket should start to be valid.J]
Accepts same time syntax as --endtime. The default|]
is to become valid immediately.

Service name in ticket to use for authenticating]]
request. Only for TGS. Defaults to
"krbtgt/REALMOREALM" where REALM is server realmf]
(see --realm).

Options for low-level cryptography (CRYPTO-OPTIONS):

--algorithm=ALGORITHM

--client-name=NAME
--decrypt

-—encrypt
--key-usage=KEYUSAGE

--key-value=KEY
--key-version=INTEGER
—--parameter=STRING

--password=PASSWORD

—-random

Cipher algorithm, expressed either as the etypell
integer or the registered name.

Username. Default is login name.

Decrypt data.

Encrypt data.

Encrypt or decrypt using specified key usage.|]
Default is O, which means no key derivation arel}
performed.

Base64 encoded key value.

Version number of key.

String-to-key parameter to use when --password isfj
specified. This data is specific for each
encryption algorithm and rarely needed.

Password used to generate key. --client-name and]]
--realm also modify the computed key value.
Generate key from random data.

--read-data-file=[TYPE,]FILE

--read-key-file=FILE
--realm=REALM

—--salt=SALT

Read data from FILE in TYPE, BASE64, HEX or BINARYHN
(default).

Read cipher key from FILE

Realm of principal. Defaults to DNS domain of]}
local host.

Salt to use when --password is specified. Defaults]j
to using theusername (--client-name) and realm]]
(--realm).

--write-data-file=[TYPE,]FILE

Write data to FILE in TYPE, BASE64, HEX or BINARYH
(default).

Chapter 2: User Manual

12

--write-key-file=FILE Append cipher key to FILE

Other options:

--configuration-file=FILE Read user configuration from file. Default]]

-c, ——ticket-file=FILE

is ~/.shishi/config.
Read tickets from FILE. Default is
$HOME/ .shishi/tickets.

-0, ——library-options=STRING Parse STRING as a configuration file

-q, ——quiet, --silent

statement.
Don’t produce any output.

--system-configuration-file=FILE

Read system wide configuration from file. Defaultf
is /usr/local/etc/shishi.conf.

——ticket-write-file=FILE Write tickets to FILE. Default is to writell

-v, —-verbose
--verbose-library
NAME
-7, ——help
--usage
-V, —--version

them back to ticket file.

Produce verbose output.

Produce verbose output in the library.

Set client name and realm from NAME. The
--client-name and --realm can be used to overridell
part of NAME.

Give this help list

Give a short usage message

Print program version

Chapter 3: Administration Manual

3 Administration Manual

TBW.

13

Chapter 4: Programming Manual 14

4 Programming Manual

This chapter describes all the publicly available functions in the library.

4.1 Preparation

To use ‘Libshishi’, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

A faster way to find out how to adapt your application for use with ‘Libshishi’ may be
to look at the examples at the end of this manual (see Section 4.15 [Examples], page 80).

4.1.1 Header

All interfaces (data types and functions) of the library are defined in the header file ‘shishi.h’.
You must include this in all programs using the library, either directly or through some other
header file, like this:

#include <shishi.h>

The name space of ‘Libshishi’ is shishi_* for function names, Shishi* for data types
and SHISHI_x* for other symbols. In addition the same name prefixes with one prepended
underscore are reserved for internal use and should never be used by an application.

4.1.2 Initialization

‘Libshishi’” must be initialized before it can be used. The library is initialized by calling
shishi_init () (see Section 4.2 [Initialization Functions|, page 15). The resources allocated
by the initialization process can be released if the application no longer has a need to call
‘Libshishi’ functions, this is done by calling shishi_done().

In order to take advantage of the internationalisation features in ‘Libshishi’, such as

translated error messages, the application must set the current locale using setlocale()
before initializing ‘Libshishi’.

4.1.3 Version Check

It is often desirable to check that the version of ‘Libshishi’ used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup.

const char * shishi_check_version (const char * req_version) [Function]
req_version: version string to compare with, or NULL

Check that the the version of the library is at minimum the one given as a string in
req_version.

Chapter 4: Programming Manual 15

the actual version string of the library; NULL if the condition is not met. If NULL
is passed to this function no check is done and only the version string is returned.
It is a pretty good idea to run this function as soon as possible, because it may also
intializes some subsystems. In a multithreaded environment if should be called before
any more threads are created.

The normal way to use the function is to put something similar to the following early in
your main():
if (!shishi_check_version (SHISHI_VERSION))
{
printf ("shishi_check_version() failed:\n"
"Header file incompatible with shared library.\n");
exit(1);
}

4.1.4 Building the source

If you want to compile a source file including the ‘shishi.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, ‘Libshishi’” uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
shishi. The following example shows how it can be used at the command line:

gcc —c foo.c ‘pkg-config shishi --cflags®

Adding the output of ‘pkg-config shishi --cflags’ to the compilers command line
will ensure that the compiler can find the ‘Libshishi’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--1ibs’ to pkg-config
shishi can be used. For convenience, this option also outputs all other options that are
required to link the program with the ‘Libshishi’ libararies (in particular, the ‘~1shishi’
option). The example shows how to link ‘foo.o’ with the ‘Libshishi’ library to a program
foo.

gcc —o foo foo.o ‘pkg-config shishi --1ibs‘
Of course you can also combine both examples to a single command by specifying both
options to pkg-config:
gcc -o foo foo.c ‘pkg-config shishi --cflags --1ibs®

4.2 Initialization Functions
Shishi * shishi (void) [Function]

Initializes the Shishi library. If this function fails, it may print diagnostic errors to
stderr.

Chapter 4: Programming Manual 16

Returns Shishi library handle, or NULL on error.

int shishi_init (Shishi ** handle) [Function]
handle: pointer to handle to be created.

Create a Shishi library handle and read the system configuration file, user configura-
tion file and user tickets from the default paths. The paths to the system configuration
file is decided at compile time, and is $sysconfdir /shishi.conf. The user configuration
file is SHOME/ .shishi/config, and the user ticket file is SHOME/ .shishi/ticket. The
handle is allocated regardless of return values, except for SHISHI_ HANDLE_ERROR
which indicates a problem allocating the handle. (The other error conditions comes
from reading the files.)

Returns SHISHI_OK iff successful.

int shishi_init_with_paths (Shishi ** handle, const char * [Function]
tktsfile, const char * systemcfgfile, const char * usercfgfile)
handle: pointer to handle to be created.
tktsfile: Filename of ticket file, or NULL.
systemcfgfile: Filename of system configuration, or NULL.
usercfgfile: Filename of user configuration, or NULL.

Like shishi_init() but use explicit paths. Like shishi_init (), the handle is al-
located regardless of return values, except for SHISHI_ HANDLE_ERROR which in-
dicates a problem allocating the handle. (The other error conditions comes from
reading the files.)

Returns SHISHI_OK iff successful.

int shishi_init_server (Shishi ** handle) [Function]
handle: pointer to handle to be created.
Like shishi_init() but only read the system configuration file. Like
shishi_init(), the handle is allocated regardless of return values, except for
SHISHI_HANDLE_ERROR which indicates a problem allocating the handle. (The
other error conditions comes from reading the configuration file.)

Returns SHISHI_OK iff successful.

int shishi_init_server_with_paths (Shishi ** handle, const char [Function]
* systemcfgfile)
handle: pointer to handle to be created.
systemcfgfile: Filename of system configuration, or NULL.

Like shishi_init() but only read the system configuration file from specified loca-
tion. Like shishi_init (), the handle is allocated regardless of return values, except
for SHISHI. HANDLE_ERROR which indicates a problem allocating the handle. (The
other error conditions comes from reading the configuration file.)

Returns SHISHI_OK iff successful.

void shishi_done (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init ().

Chapter 4: Programming Manual

17

Deallocates the shishi library handle. The handle must not be used in any calls to
shishi functions after this. If there is a default tkts, it is written to the default tkts file
(call shishi_tkts_default_file_set () to change the default tkts file). If you do not
wish to write the default tkts file, close the default tkts with shishi_tkts_done(handle,

NULL) before calling this function.

int shishi_cfg (Shishi * handle, char * option)
handle: Shishi library handle create by shishi_init().

option: string with shishi library option.
Configure shishi library with given option.
Returns SHISHI_OK if option was valid.

int shishi_cfg_from_file (Shishi * handle, const char * cfg)
handle: Shishi library handle create by shishi_init().

cfg: filename to read configuration from.

Configure shishi library using configuration file.
Returns SHISHI_OK iff succesful.

int shishi_cfg_print (Shishi * handle, FILE * fh)
handle: Shishi library handle create by shishi_init().

th: file descriptor opened for writing.

Print library configuration status, mostly for debugging purposes.
Returns SHISHI_OK.

const char * shishi_cfg_default_systemfile (Shishi * handle)
handle: Shishi library handle create by shishi_init().

Return system configuration filename.

const char * shishi_cfg_default_userdirectory (Shishi * handle)

handle: Shishi library handle create by shishi_init ().

Return directory with configuration files etc.

const char * shishi_cfg_default_userfile (Shishi * handle)
handle: Shishi library handle create by shishi_init ().

Return user configuration filename.

int shishi_cfg_clientkdcetype (Shishi * handle, int32_t *x*

etypes)
handle: Shishi library handle create by shishi_init().

etypes: output array with encryption types.
Set the etypes variable to the array of preferred client etypes.

Return the number of encryption types in the array, 0 means none.

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Chapter 4: Programming Manual 18

int shishi_cfg_clientkdcetype_set (Shishi * handle, char * [Function]
value)
handle: Shishi library handle create by shishi_init().
value: string with encryption types.

Set the "client-kdc-etypes" configuration option from given string. The string con-
tains encryption types (integer or names) separated by comma or whitespace, e.g.
"aes2b6-cts-hmac-shal-96 des3-cbc-shal-kd des-cbc-md5".

Return SHISHI_OK iff successful.

4.3 Ticket Set Functions

A “ticket set” is, as the name implies, a collection of tickets. Functions are provided to read
tickets from file into a ticket set, to query number of tickets in the set, to extract a given
ticket from the set, to search the ticket set for tickets matching certain criterium, to write
the ticket set to a file, etc. High level functions for performing a initial authentication (see
Section 4.7 [AS Functions|, page 40) or subsequent authentication (see Section 4.8 [TGS
Functions], page 44) and storing the new ticket in the ticket set are also provided.

To manipulate each individual ticket, See Section 4.6 [Ticket Functions|, page 39. For
low-level ASN.1 manipulation see See Section 4.9 [Ticket (ASN.1) Functions|, page 47.

char * shishi_tkts_default_file_guess (void) [Function]
Guesses the default ticket filename; it is SHOME/ .shishi/tickets.

Returns default tkts filename as a string that has to be deallocated with free() by
the caller.

const char * shishi_tkts_default_file (Shishi * handle) [Function]
handle: Shishi library handle create by shishi_init().

Returns the default ticket set filename used in the library. (Not a copy of it, so don’t
modify or deallocate it.)

void shishi_tkts_default_file_set (Shishi * handle, const char * [Function]
tktsfile)
handle: Shishi library handle create by shishi_init().

tktsfile: string with new default tkts file name, or NULL to reset to default.

Set the default ticket set filename used in the library. The string is copied into the
library, so you can dispose of the variable immediately after calling this function.

Shishi_tkts * shishi_tkts_default (Shishi * handle) [Function]
handle: Shishi library handle create by shishi_init().

Return the handle global ticket set.

int shishi_tkts (Shishi * handle, Shishi_tkts ** tkts) [Function]
handle: shishi handle as allocated by shishi_init().

tkts: output pointer to newly allocated tkts handle.
Returns SHISHI_OK iff successful.

Chapter 4: Programming Manual 19

void shishi_tkts_done (Shishi_tkts ** tkts) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

Deallocates all resources associated with ticket set. The ticket set handle must not
be used in calls to other shishi_tkts_*() functions after this.

int shishi_tkts_size (Shishi_tkts * tkts) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

Returns number of tickets stored in ticket set.

Shishi_tkt * shishi_tkts_nth (Shishi_tkts * tkts, int ticketno) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

ticketno: integer indicating requested ticket in ticket set.

Returns a ticket handle to the ticketno:th ticket in the ticket set, or NULL if ticket
set is invalid or ticketno is out of bounds. The first ticket is ticketno 0, the second
ticketno 1, and so on.

int shishi_tkts_remove (Shishi_tkts * tkts, int ticketno) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

ticketno: ticket number of ticket in the set to remove. The first ticket is ticket number
0.

Returns SHISHI_OK if succesful or if ticketno larger than size of ticket set.

int shishi_tkts_add (Shishi_tkts * tkts, Shishi_tkt * tkt) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

tkt: ticket to be added to ticket set.
Returns SHISHI_OK iff succesful.

int shishi_tkts_new (Shishi_tkts * tkts, Shishi_asnl ticket, [Function]
Shishi_asnl enckdcreppart, Shishi_asnl kdcrep)
tkts: ticket set handle as allocated by shishi_tkts().

ticket: input ticket variable.

enckdcreppart: input ticket detail variable.
kdcrep: input KDC-REP variable.

Allocate a new ticket and add it to the ticket set.
Returns SHISHI_OK iff succesful.

int shishi_tkts_read (Shishi_tkts * tkts, FILE * fh) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

th: file descriptor to read from.
Read tickets from file descriptor and add them to the ticket set.
Returns SHISHI_OK iff succesful.

int shishi_tkts_from_file (Shishi_tkts * tkts, const char * [Function]
filename)
tkts: ticket set handle as allocated by shishi_tkts().

Chapter 4: Programming Manual 20

filename: filename to read tickets from.
Read tickets from file and add them to the ticket set.
Returns SHISHI_OK iff succesful.

int shishi_tkts_write (Shishi_tkts * tkts, FILE * fh) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

th: file descriptor to write tickets to.
Write tickets in set to file descriptor.
Returns SHISHI_OK iff succesful.

int shishi_tkts_expire (Shishi_tkts * tkts) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

Remove expired tickets from ticket set.

Returns SHISHI_OK iff succesful.

int shishi_tkts_to_file (Shishi_tkts * tkts, const char * filename) [Function]

tkts: ticket set handle as allocated by shishi_tkts().
filename: filename to write tickets to.

Write tickets in set to file.

Returns SHISHI_OK iff succesful.

int shishi_tkts_print_for_service (Shishi_tkts * tkts, FILE * fh, [Function]
const char * service)
tkts: ticket set handle as allocated by shishi_tkts().

th: file descriptor to print to.

service: service to limit tickets printed to, or NULL. Print description of tickets for
specified service to file descriptor. If service is NULL, all tickets are printed.

Returns SHISHI_OK iff succesful.

int shishi_tkts_print (Shishi_tkts * tkts, FILE * fh) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

th: file descriptor to print to.
Print description of all tickets to file descriptor.
Returns SHISHI_OK iff succesful.

int shishi_tkt_match_p (Shishi_tkt * tkt, Shishi_tkts_hint * [Function]
hint)
tkt: ticket to test hints on.

hint: structure with characteristics of ticket to be found.

Returns 0 iff ticket fails to match given criteria.

Chapter 4: Programming Manual 21

Shishi_tkt * shishi_tkts_find (Shishi_tkts * tkts, [Function]
Shishi_tkts_hint * hint)
tkts: ticket set handle as allocated by shishi_tkts().

hint: structure with characteristics of ticket to be found.

Search the ticketset sequentially (from ticket number O through all tickets in the
set) for a ticket that fits the given characteristics. If a ticket is found, the hint-
>startpos field is updated to point to the next ticket in the set, so this function can
be called repeatedly with the same hint argument in order to find all tickets matching
a certain criterium. Note that if tickets are added to, or removed from, the ticketset
during a query with the same hint argument, the hint->startpos field must be updated
appropriately.

Shishi_tkts_hint hint;
Shishi_tkt tkt;

memset(hint, 0, sizeof(hint));

hint.server = "imap/mail.example.org";
tkt = shishi_tkts_find (shishi_tkts_default(handle), hint);
if ('tkt)

printf("No ticket found...\n");

else

...do something with ticket

Returns a ticket if found, or NULL if no further matching tickets could be found.

Shishi_tkt * shishi_tkts_find_for_clientserver (Shishi_tkts * [Function]
tkts, const char * client, const char * server)
tkts: ticket set handle as allocated by shishi_tkts().

client: client name to find ticket for.
server: server name to find ticket for.

Short-hand function for searching the ticket set for a ticket for the given client and
server. See shishi_tkts_find().

Returns a ticket if found, or NULL.

Shishi_tkt * shishi_tkts_find_for_server (Shishi_tkts * tkts, [Function]
const char * server)
tkts: ticket set handle as allocated by shishi_tkts().

server: server name to find ticket for.

Short-hand function for searching the ticket set for a ticket for the given server us-
ing the default client principal. See shishi_tkts_find_for_clientserver() and
shishi_tkts_find().

Returns a ticket if found, or NULL.

Chapter 4: Programming Manual 22

Shishi_tkt * shishi_tkts_get (Shishi_tkts * tkts, [Function]
Shishi_tkts_hint * hint)

tkts: ticket set handle as allocated by shishi_tkts().
hint: structure with characteristics of ticket to begot.
Get a ticket matching given characteristics. This function first looks in the ticket
set for the ticket, then tries to find a TGT for the realm (possibly by using an AS
exchange) and then use the TGT in a TGS exchange to get the ticket. Currently this
function do not implement cross realm logic.

Returns a ticket if found, or NULL if this function is unable to get the ticket.

Shishi_tkt * shishi_tkts_get_for_clientserver (Shishi_tkts * [Function]
tkts, const char * client, const char * server)
tkts: ticket set handle as allocated by shishi_tkts().

client: client name to get ticket for.
server: server name to get ticket for.

Short-hand function for getting a ticket for the given client and server. See shishi_
tkts_get ().

Returns a ticket if found, or NULL.

Shishi_tkt * shishi_tkts_get_for_server (Shishi_tkts * tkts, [Function]
const char * server)
tkts: ticket set handle as allocated by shishi_tkts().
server: server name to get ticket for.
Short-hand function for getting a ticket for the given server and the default principal
client. See shishi_tkts_get ().

Returns a ticket if found, or NULL.

4.4 AP-REQ and AP-REP Functions

The “AP-REQ” and “AP-REP” are ASN.1 structures used by application client and servers
to prove to each other who they are. The structures contain auxilliary information, together
with an authenticator (see Section 4.11 [Authenticator Functions], page 61) which is the real
cryptographic proof. The following illustrates the AP-REQ and AP-REP ASN.1 structures.

AP-REQ ::= [APPLICATION 14] SEQUENCE {
pvno (0] INTEGER (5),
msg-type [1] INTEGER (14),
ap-options [2] APOptions,
ticket [3] Ticket,

authenticator [4] EncryptedData {Authenticator,
{ keyuse-pa-TGSReq-authenticator
| keyuse-APReq-authenticator 1}}

AP-REP ::= [APPLICATION 15] SEQUENCE {

Chapter 4: Programming Manual

pvno [0] INTEGER (5),
msg-type [1] INTEGER (15),
enc-part [2] EncryptedData {EncAPRepPart,
{ keyuse-EncAPRepPart }}
}
EncAPRepPart ::= [APPLICATION 27] SEQUENCE {
ctime [0] KerberosTime,
cusec [1] Microseconds,
subkey [2] EncryptionKey OPTIONAL,
seg-number [3] UInt32 OPTIONAL
}

int shishi_ap (Shishi * handle, Shishi_ap ** ap)
handle: shishi handle as allocated by shishi_init().

ap: pointer to new structure that holds information about AP exchange

Create a new AP exchange.
Returns SHISHI_OK iff successful.

int shishi_ap_set_tktoptions (Shishi_ap * ap, Shishi_tkt * tkt,
int options)
ap: structure that holds information about AP exchange
tkt: ticket to set in AP.

options: AP-REQ options to set in AP.

23

[Function]

[Function]

Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see

shishi_apreq_options_set()).
Returns SHISHI_OK iff successful.

int shishi_ap_set_tktoptionsdata (Shishi_ap * ap, Shishi_tkt *
tkt, int options, char * data, int len)
ap: structure that holds information about AP exchange

tkt: ticket to set in AP.
options: AP-REQ options to set in AP.
data: input array with data to checksum in Authenticator.

len: length of input array with data to checksum in Authenticator.

[Function]

Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see
shishi_apreq_options_set()) and set the Authenticator checksum data.

Returns SHISHI_OK iff successful.

int shishi_ap_set_tktoptionsasnlusage (Shishi_ap * ap,

[Function]

Shishi_tkt * tkt, int options, Shishi_asnl node, char * field, int

authenticatorcksumkeyusage, int authenticatorkeyusage)
ap: structure that holds information about AP exchange

tkt: ticket to set in AP.
options: AP-REQ options to set in AP.

Chapter 4: Programming Manual 24

node: input ASN.1 structure to store as authenticator checksum data.

Set ticket, options and authenticator checksum data using shishi_ap_set_
tktoptionsdata(). The authenticator checksum data is the DER encoding of the
ASN.1 structure provided.

Returns SHISHI_OK iff successful.

int shishi_ap_tktoptions (Shishi * handle, Shishi_ap ** ap, [Function]
Shishi_tkt * tkt, int options)
handle: shishi handle as allocated by shishi_init ().

ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.
options: AP-REQ options to set in newly created AP.

Create a new AP exchange using shishi_ap(), and set the ticket and AP-REQ
apoptions using shishi_ap_set_tktoption().

Returns SHISHI_OK iff successful.

int shishi_ap_tktoptionsdata (Shishi * handle, Shishi_ap ** ap, [Function]
Shishi_tkt * tkt, int options, char * data, int len)
handle: shishi handle as allocated by shishi_init().

ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.

options: AP-REQ options to set in newly created AP.

data: input array with data to checksum in Authenticator.

len: length of input array with data to checksum in Authenticator.

Create a new AP exchange using shishi_ap(), and set the ticket, AP-REQ apoptions
and the Authenticator checksum data using shishi_ap_set_tktoptionsdata().

Returns SHISHI_OK iff successful.

int shishi_ap_tktoptionsasnlusage (Shishi * handle, Shishi_ap [Function]
** ap, Shishi_tkt * tkt, int options, Shishi_asnl node, char * field,
int authenticatorcksumkeyusage, int authenticatorkeyusage)
handle: shishi handle as allocated by shishi_init ().

ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.

options: AP-REQ options to set in newly created AP.

node: input ASN.1 structure to store as authenticator checksum data.

Create a new AP exchange using shishi_ap(), and set ticket, options and authen-
ticator checksum data from the DER encoding of the ASN.1 field using shishi_ap_
set_tktoptionsasniusage().

Returns SHISHI_OK iff successful.

Shishi_tkt * shishi_ap_tkt (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Returns the ticket from the AP exchange, or NULL if not yet set or an error occured.

Chapter 4: Programming Manual 25

void shishi_ap_tkt_set (Shishi_ap * ap, Shishi_tkt * tkt) [Function]
ap: structure that holds information about AP exchange

tkt: ticket to store in AP.
Set the Ticket in the AP exchange.

int shishi_ap_authenticator_cksumdata (Shishi_ap * ap, char * [Function]
out, int * len)
ap: structure that holds information about AP exchange
out: output array that holds authenticator checksum data.

len: on input, maximum length of output array that holds authenticator checksum
data, on output actual length of output array that holds authenticator checksum data.

Returns SHISHI_OK if successful, or SHISHI_.TOO_SMALL_BUFFER if buffer pro-
vided was too small.

void shishi_ap_authenticator_cksumdata_set (Shishi_ap * ap, [Function]
char * authenticatorcksumdata, int authenticatorcksumdatalen)
ap: structure that holds information about AP exchange

authenticatorcksumdata: input array with authenticator checksum data to use in AP.

authenticatorcksumdatalen: length of input array with authenticator checksum data
to use in AP.

Set the Authenticator Checksum Data in the AP exchange.

Shishi_asnl shishi_ap_authenticator (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Returns the Authenticator from the AP exchange, or NULL if not yet set or an error
occured.

void shishi_ap_authenticator_set (Shishi_ap * ap, Shishi_asni [Function]
authenticator)
ap: structure that holds information about AP exchange

authenticator: authenticator to store in AP.

Set the Authenticator in the AP exchange.

Shishi_asnl shishi_ap_req (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Returns the AP-REQ from the AP exchange, or NULL if not yet set or an error
occured.

void shishi_ap_req_set (Shishi_ap * ap, Shishi_asnl apreq) [Function]
ap: structure that holds information about AP exchange
apreq: apreq to store in AP.
Set the AP-REQ in the AP exchange.

Chapter 4: Programming Manual 26

int shishi_ap_req_der (Shishi_ap * ap, char * out, int * outlen) [Function]
ap: structure that holds information about AP exchange

out: output array with der encoding of AP-REQ.

outlen: length of output array with der encoding of AP-REQ.
Build AP-REQ using shishi_ap_req_build() and DER encode it.
Returns SHISHI_OK iff successful.

int shishi_ap_req_der_new (Shishi_ap * ap, char ** out, int * [Function]
outlen)
ap: structure that holds information about AP exchange

out: pointer to output array with der encoding of AP-REQ.
outlen: pointer to length of output array with der encoding of AP-REQ.

Build AP-REQ using shishi_ap_req_build() and DER encode it. out is allocated
by this function, and it is the responsibility of caller to deallocate it.

Returns SHISHI_OK iff successful.

int shishi_ap_req_der_set (Shishi_ap * ap, char * der, size_t [Function]
derlen)
ap: structure that holds information about AP exchange

der: input array with DER encoded AP-REQ.
derlen: length of input array with DER encoded AP-REQ.

DER decode AP-REQ and set it AP exchange. If decoding fails, the AP-REQ in the
AP exchange is lost.

Returns SHISHI_OK.

int shishi_ap_req_build (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Checksum data in authenticator and add ticket and authenticator to AP-REQ.
Returns SHISHI_OK iff successful.

int shishi_ap_req_process (Shishi_ap * ap, Shishi_key * key) [Function]
ap: structure that holds information about AP exchange

key: cryptographic key used to decrypt ticket in AP-REQ.

Decrypt ticket in AP-REQ using supplied key and decrypt Authenticator in AP-REQ
using key in decrypted ticket, and on success set the Ticket and Authenticator fields
in the AP exchange.

Returns SHISHI_OK iff successful.

int shishi_ap_req_asnl (Shishi_ap * ap, Shishi_asnl * apreq) [Function]
ap: structure that holds information about AP exchange

apreq: output AP-REQ variable.
Build AP-REQ using shishi_ap_req_build() and return it.
Returns SHISHI_OK iff successful.

Chapter 4: Programming Manual 27

Shishi_asnl shishi_ap_rep (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Returns the AP-REP from the AP exchange, or NULL if not yet set or an error
occured.

void shishi_ap_rep_set (Shishi_ap * ap, Shishi_asnl aprep) [Function]
ap: structure that holds information about AP exchange

aprep: aprep to store in AP.
Set the AP-REP in the AP exchange.

int shishi_ap_rep_der (Shishi_ap * ap, char * out, size_t * [Function]
outlen)
ap: structure that holds information about AP exchange

out: output array with der encoding of AP-REP.

outlen: length of output array with der encoding of AP-REP.
Build AP-REP using shishi_ap_rep_build() and DER encode it.
Returns SHISHI_OK iff successful.

int shishi_ap_rep_der_set (Shishi_ap * ap, char * der, size_t [Function]
derlen)
ap: structure that holds information about AP exchange

der: input array with DER encoded AP-REP.
derlen: length of input array with DER encoded AP-REP.

DER decode AP-REP and set it AP exchange. If decoding fails, the AP-REP in the
AP exchange remains.

Returns SHISHI_OK.

int shishi_ap_rep_build (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Checksum data in authenticator and add ticket and authenticator to AP-REQ.
Returns SHISHI_OK iff successful.

int shishi_ap_rep_asnl (Shishi_ap * ap, Shishi_asnl * aprep) [Function]
ap: structure that holds information about AP exchange

aprep: output AP-REP variable.
Build AP-REP using shishi_ap_rep_build() and return it.
Returns SHISHI_OK iff successful.

int shishi_ap_rep_verify (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Verify AP-REP compared to Authenticator.
Returns SHISHI_OK, SHISHI_APREP_VERIFY _FAILED or an error.

Chapter 4: Programming Manual 28

int shishi_ap_rep_verify_der (Shishi_ap * ap, char * der, size_t [Function]
derlen)
ap: structure that holds information about AP exchange

der: input array with DER encoded AP-REP.
derlen: length of input array with DER encoded AP-REP.

DER decode AP-REP and set it in AP exchange using shishi_ap_rep_der_set ()
and verify it using shishi_ap_rep_verify().

Returns SHISHI_OK, SHISHI_APREP_VERIFY_FAILED or an error.

int shishi_ap_rep_verify_asnl (Shishi_ap * ap, Shishi_asni [Function]

aprep)
ap: structure that holds information about AP exchange

aprep: input AP-REP.

Set the AP-REP in the AP exchange using shishi_ap_rep_set () and verify it using
shishi_ap_rep_verify().

Returns SHISHI_OK, SHISHI_APREP_VERIFY_FAILED or an error.

Shishi_asnl shishi_ap_encapreppart (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Returns the EncAPREPPart from the AP exchange, or NULL if not yet set or an
error occured.

void shishi_ap_encapreppart_set (Shishi_ap * ap, Shishi_asnl [Function]
encapreppart)
ap: structure that holds information about AP exchange

encapreppart: EncAPRepPart to store in AP.
Set the EncAPRepPart in the AP exchange.

Shishi_asnl shishi_apreq (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init().

This function creates a new AP-REQ, populated with some default values.
Returns the AP-REQ or NULL on failure.

int shishi_apreq_print (Shishi * handle, FILE * fh, Shishi_asnl [Function]

apreq)
handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

apreq: AP-REQ to print.

Print ASCII armored DER encoding of AP-REQ to file.
Returns SHISHI_OK iff successful.

int shishi_apreq_save (Shishi * handle, FILE * fh, Shishi_asni [Function]

apreq)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for writing.

Chapter 4: Programming Manual 29

apreq: AP-REQ to save.
Save DER. encoding of AP-REQ to file.
Returns SHISHI_OK iff successful.

int shishi_apreq_to_file (Shishi * handle, Shishi_asnl apreq, int [Function]
filetype, char x filename)
handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ to save.

filetype: input variable specifying type of file to be written, see Shishi_filetype.
filename: input variable with filename to write to.

Write AP-REQ to file in specified TYPE. The file will be truncated if it exists.
Returns SHISHI_OK iff successful.

int shishi_apreq_parse (Shishi * handle, FILE * fh, Shishi_asnl * [Function]

apreq)
handle: shishi handle as allocated by shishi_init().

th: file handle open for reading.

apreq: output variable with newly allocated AP-REQ.

Read ASCII armored DER encoded AP-REQ from file and populate given variable.
Returns SHISHI_OK iff successful.

int shishi_apreq_read (Shishi * handle, FILE * fh, Shishi_asnl * [Function]

apreq)
handle: shishi handle as allocated by shishi_init ().

fh: file handle open for reading.

apreq: output variable with newly allocated AP-REQ.

Read DER encoded AP-REQ from file and populate given variable.
Returns SHISHI_OK iff successful.

int shishi_apreq_from_file (Shishi * handle, Shishi_asnl * apreq, [Function]
int filetype, char * filename)
handle: shishi handle as allocated by shishi_init().

apreq: output variable with newly allocated AP-REQ.

filetype: input variable specifying type of file to be read, see Shishi_filetype.
filename: input variable with filename to read from.

Read AP-REQ from file in specified TYPE.

Returns SHISHI_OK iff successful.

int shishi_apreq_set_authenticator (Shishi * handle, [Function]
Shishi_asnl apreq, int32_t etype, char * buf, int buflen)
handle: shishi handle as allocated by shishi_init ().

apreq: AP-REQ to add authenticator field to.

etype: encryption type used to encrypt authenticator.

Chapter 4: Programming Manual 30

