Building and Installing GNU units
on Microsoft Windows with the
MKS Toolkit

Edition 1 for units Version 2.13

Jeff Conrad




This manual is for building and installing GNU units (version 2.13) on Microsoft Windows
with the PTC MKS Toolkit.

Copyright (©) 2016 Free Software Foundation, Inc.



Table of Contents

Preface. ... ..

Building and Installing units.......................

OVEIVIEW .« . ettt et e
Configuring configure ....... ...t
Customizing the Installation ......... ... ... o o i i
Administrative Privilege . ...
Environment Variables for Visual Studio .............................
Initialization with the Korn Shell .......... ... ... ... .. ... .....
Adjustment for Different Visual Studio Installations...............
“install” Programs. .........ouiireen e
Running with Administrative Privilege............................
Providing a Manifest File....... ... ... o oot
Embedding a Manifest in the install Program .....................

Fine Tuning Makefile ........... .. ... ..

Behavior of PAGER . ..ottt
MKS make and Suffix Rules. ...
Install Program . ...... ...

Icons and File Association..........................
MEKS Units. ..o

Updating Currency Definitions ....................

Installing Python ........... .
Python and configure ......... ... ... i
Running the Updater...... ... .. i i



Building units on Windows with MKS Toolkit 1

Preface

This manual covers configuring, building, and installing GNU units from the MKS Korn
shell on Microsoft Windows. The process runs much as it would on Unix-like systems, and
much of what follows assumes that the installation will be in the same places as they would
on Unix-like systems (e.g., C:/usr/local/bin for the executable). Most of the discussion
implicitly assumes using Microsoft Visual Studio for compiling.

If Visual Studio is installed but Unix-like commands are not available, you can probably
build units from the Windows command prompt using Makefile.Win—see UnitsWin for
details.

A binary distribution for Windows is available, but if you use more or less as your
pager, it is better to build units for MKS—see [Behavior of PAGER], page 5, for details.

The system on which the build was done had /bin as a symbolic link to
C:/Program Files (x86)/MKS Toolkit/mksnt; with this approach, there is no need to
change the first lines of any scripts in the units distribution.

The most recent build was for units version 2.13, using the MKS Toolkit for Developers
version 10.0 and Microsoft Visual Studio 2015 on Microsoft Windows Professional 10 on
11 June 2016.

— Jeff Conrad (jeff_conrad@msn.com) 11 June 2016

Building and Installing units

Overview

On Unix-like systems, building and installing units is simple; just type
./configure; make; make install

On Windows—even if Unix-like utilities such as the MKS Toolkit are available—additional
steps are usually needed. A more realistic procedure might be as follows:

1. Create a config.site file that specifies several parameters for configure. Alterna-
tively, you can pass the parameters to configure at invocation.

2. Start an instance of the Korn shell with administrative privilege.

3. If you are using Microsoft Visual Studio, initialize the environment variables for Visual
Studio with the setvcvars script:

./setvcvars
4. Prepare the files needed to build units by running the configuration script:
./configure
5. Manually adjust Makefile if necessary.
6. Build the executable and support files:
make
7. If the build is successful, install the package:

make install

Some of the issues involved are discussed below.


mailto:jeff_conrad@msn.com

Building units on Windows with MKS Toolkit 2

Configuring configure

The configure script attempts to make the build process system independent. But on
non—Unix-like systems, configure often needs some help. When using the MKS Toolkit on
Windows, configure depends on the environment variables ac_executable_extensions
and PATH_SEPARATOR. It is often easier to use the Microsoft Visual Studio C compiler cl
directly rather than through the MKS wrapper cc; for this to happen, the variable CC must
be set to cl or cl.exe

The variables can be given to configure in several ways:
e The variables can be passed to configure at invocation as name-value pairs, i.e.,
./configure [name=value ...]
e The variables can be set and marked for export, e.g.,

export ac_executable_extensions=".exe .sh .ksh"
export PATH_SEPARATOR=";"

e The variables can be set in a site configuration script that is read by configure at
invocation. Such a script might include

ac_executable_extensions=".exe .sh .ksh"
PATH_SEPARATOR=";"

By default, the script is /usr/local/share/config.site. If you specify a location
other than /usr/local/ for the installation with the —--prefix option to configure,
the configuration script is expected to be prefix/local/ share/config.site. If you
wish to have a fixed location for the configuration script, you can do so with the
CONFIG_SITE environment variable. For example, if you have a configuration script
that you want read regardless of the ——prefix option, you could give

CONFIG_SITE="C:/usr/local/share/config.site"
A more complete config.site might include

ac_executable_extensions=".exe .sh .ksh"

ac_ext=cpp

prefix=C:/usr/local

PATH_SEPARATOR=";"
INSTALL="C:/usr/local/bin/install.exe -c"

CC=cl.exe

CFLAGS="-02 -W3 -D_CRT_SECURE_NO_WARNINGS -nologo"
CXX=cl.exe

CXXFLAGS="-02 -W3 -D_CRT_SECURE_NO_WARNINGS -nologo"

(ac_ext, CXX, and CXXFLAGS are not needed for building units)

Customizing the Installation

By default, ‘make install’ installs units in subdirectories of /usr/local; you can specify
a different location using the —--prefix option. For example, if you want to install units
in C:/Program Files (x86)/GNU, you might invoke configure with

./configure --prefix=C:/Progra~2/GNU
The Windows “8.3” short name is used because the installation process does not like spaces
or parentheses in pathnames. The short name for C:/Program Files (x86) is usually as



Building units on Windows with MKS Toolkit 3

shown, but can vary from system to system. You can find the actual short name on your
system with the dosname command, e.g.,

dosname "C:/Program Files (x86)"

If you don’t specify a prefix, or you specify a prefix without a drive letter, the installation
will be on the same drive as the MKS Toolkit.

configure provides many other options for customizing the installation; typing
./configure --help

gives a summary of these options. Running configure is discussed in detail under the
section “Running configure Scripts” in the GNU documentation for autoconf, available
at http:// www.gnu.org/software/autoconf/.

Administrative Privilege

If you plan to install units in a location where you lack write permission, you’ll need
administrative permission for the installation and perhaps for the configuration and build
(see [“install” Programs|, page 4). The easiest way to do this is to start the shell by right-
clicking on the shell icon (or a shortcut) from Explorer and using the Run as administrator
option from the context menu.

Environment Variables for Visual Studio

Microsoft Visual Studio requires that several environment variables (e.g., PATH) be set to
include numerous directories for a build from the command line. Visual Studio provides an
option on the Windows Start Menu to run an instance of the Windows command interpreter
with these variables initialized.

Initialization with the Korn Shell

The setvcvars script included in the units distribution will set these variables for the shell
by running the batch file used for the Visual Studio command prompt, writing the variable
values to the standard output, and reading them into the shell. For the values to persist,
the script must of course be run in the current environment, e.g., ‘source ./setvcvars’
or ‘. ./setvcvars’. These variables must be set for any command-line build with Vi-
sual Studio, so it may be helpful to copy the script to a directory that’s in PATH (e.g.,
/usr/local/bin).

Adjustment for Different Visual Studio Installations

The location of the batch file and the values of the environment variables are installation
specific; the setvcvars script assumes a standard installation of Visual Studio 2015
Express or Visual Studio 2015 Community. For a nonstandard installation or for a
different version, the value of vsbatfile in the script may need to be modified. To
find the appropriate value, go to the Windows Start Menu, find Visual Studio 20xx
Developer Command Prompt for V520xx, right click, and select Properties; the Target on
the Shortcut tab should contain the proper path for the batch file.

On Windows 10, additional steps are needed to find the location of the
batch file.  Find Visual Studio 20xx on the Start Menu, click, right click on
Developer Command Prompt for VS20xx, find More, right click, and select Open file location.


http:// www.gnu.org/software/autoconf/

Building units on Windows with MKS Toolkit 4

In the instance of File Explorer that opens, find the Developer Command Prompt shortcut,
right click, and select Properties; the Target on the Shortcut tab should contain the proper
path for the batch file.

“install” Programs

If you have an executable install program, you may get an error message to the effect of
cannot execute: The requested operation requires elevation

while running configure without elevated privileges on Windows Vista or later with User
Account Control (UAC) enabled. If UAC is enabled, the system thinks executable programs
whose names contain “install”, “patch”, “update”, and similar always require elevated
privilege, and will refuse to run them without this privilege.

If this happens, configure will simply use the install-sh script included with the
units distribution. But if for some reason you wish to use your version of install, there
are several ways to do so.

Running with Administrative Privilege

The easiest solution is to do the configure with a shell with administrative privilege, as
discussed in [Administrative Privilege|, page 3. After installation, testing should be done
using a shell without elevated privilege.

Providing a Manifest File

An alternative is to tell UAC that elevated privilege is not required. To do this, create a
manifest file containing

<assembly xmlns="urn:schemas-microsoft-com:asm.v1l" manifestVersion="1.0">
<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">
<security>
<requestedPrivileges>
<!-- Tell UAC that administrative privilege is not needed -—>
<requestedExecutionLevel level="asInvoker" uilAccess="false"/>
</requestedPrivileges>
</security>
</trustInfo>
</assembly>

name it install.exe.manifest, and place it in the same directory as install.exe. Some-
times this has no effect; if this happens, adjust the modification times of the manifest and
executable so they match.

The procedure is discussed at https://github.com/bmatzelle/gow/issues/ 156,
and a similar discussion for GNU patch is given at http://math.nist . gov/oommf /
software-patchsets/patch_on_Windows7.html.

Last access: 16 May 2016

Embedding a Manifest in the install Program

If you are using MS Visual Studio, an alternative to having the manifest file in the exe-
cutable directory is to embed the manifest in the executable using the manifest tool mt . exe,


https://github.com/bmatzelle/gow/issues/156
http://math.nist.gov/oommf/software-patchsets/patch_on_Windows7.html
http://math.nist.gov/oommf/software-patchsets/patch_on_Windows7.html

Building units on Windows with MKS Toolkit 5

obviating the need to worry about the time stamps of the files. This is discussed in NIST
link above; if the command is run from the shell, the semicolon must be escaped:

mt -manifest install.exe.manifest -outputresource:install.exe\;1

Microsoft describe manifests at https: //msdn . microsoft . com / en-us / library /
bb756929.aspx.

The Code Project also discusses UAC awareness: http://www . codeproject . com/
Articles/17968/Making-Your-Application-UAC-Aware.

Fine Tuning Makefile

Behavior of PAGER

The MKS versions of more and less do not recognize +n as an option to display a file
beginning at line n, so ‘help unit’ from the units prompt will fail. If configure is able
to detect the Toolkit by running mksinfo,

-DHAVE_MKS_TOOLKIT

is added to the DEFS in Makefile. If you have the MKS Toolkit and it somehow is not
detected, you should add this manually.

MKS make and Suffix Rules

The MKS version of make ignores suffix rules in Makefile unless the line
.POSIX:

appears in Makefile before any suffix rules. This target is also required for the currency
updater units_cur to run properly from Makefile. The configure script attempts to detect
the Toolkit by running mksinfo, and if this succeeds, the .POSIX target is added. If you
have the MKS Toolkit and it somehow is not detected, you should add this line manually.

Install Program

If the PATH at shell invocation uses the backslash as the path separator, and you have a
BSD-compatible install program that is detected by configure, the backslashes may be
removed, giving an incorrect Makefile entry something like

INSTALL = c:usrlocalbin/install.exe -c
Add the slashes to get
INSTALL = c:/usr/local/bin/install.exe -c

If you will always want to use the same installation program, you can specify it with the
INSTALL variable—see [Configuring configure|, page 2.

Giving a PATH with forward slashes in a file given by ENV will have no effect because
configure unsets that variable, and the file will not be read.


https://msdn.microsoft.com/en-us/library/bb756929.aspx
https://msdn.microsoft.com/en-us/library/bb756929.aspx
http://www.codeproject.com/Articles/17968/Making-Your-Application-UAC-Aware
http://www.codeproject.com/Articles/17968/Making-Your-Application-UAC-Aware

Building units on Windows with MKS Toolkit 6

Icons and File Association

Two icons are provided: unitsfile.ico and unitsprog.ico. The former is made the
default icon for units data files, and the latter is embedded in the executable file by the
build process. The latter also may be useful if you wish to create a shortcut to the units
program. Both icons are copied to the same directory as the units data files.

The installation process associates units data files with the MKS graphical vi editor
viw; double-clicking on the file icon opens the file for editing. The encoding is set to UTF-8.

MKS units

The MKS Toolkit includes a very old version of units; if the MKS executable directory is
earlier in PATH than the installation directory for GNU units, a command-line invocation
will run the MKS version. To ensure that you run GNU units, either change PATH so that
GNU units is found first, or create an alias for GNU units.

Updating Currency Definitions

The script units_cur is used to update currency definitions; it requires Python (available
from http://www.python.org/) and the unidecode package (available at http://pypi.
python.org/).

Installing Python

If you want to use the currency updater, install Python and then install the unidecode
package—before running configure. Unless you have (or anticipate having) applications
that depend on Python 2, the best choice is probably to install Python 3.

To install the unidecode package, follow the instructions in the PKG-INFO file included
with the package.

Python’s location must be included in PATH so the shell can find it; the Python installer
usually offers to do this.

Python and configure

The complete pathname in Makefile may contain backslashes; for example,

PYTHON = C:\usr\bin/python.exe
The build will fail unless the backslashes are changed to forward slashes:

PYTHON = C:/usr/bin/python.exe
If a 32-bit version of Python is installed on a 64-bit Windows system, the Makefile entry
may contain parentheses as well as backslashes, e.g.,

PYTHON = C:\Program Files (x86)\Python33/python.exe
this will usually give a “syntax error” message when running configure. A Makefile entry
such as this must be enclosed in single quotes for the build of units to succeed. The problem
can be avoided by using the 8.3 equivalent of the Python installation directory in PATH, e.g.,

C:/Progra”2/Python33


http://www.python.org/
http://pypi.python.org/
http://pypi.python.org/

Building units on Windows with MKS Toolkit 7

An alternative is to install the 64-bit version of Python so that the installation directory
will be C:\Program Files.

The backslashes can be avoided by passing PYTHON to configure at invocation, or by
specifying it in config.site, e.g.,
PYTHON=C: /Progra~2/Python33

A disadvantage is that if the installation directory changes with a future version of
Python, config.site will need to be manually updated.

Running the Updater

If the location of units_cur is on your PATH, you can update the definitions by entering
‘units_cur’ from the command line; you will need elevated permission if you lack write
permission on the file.

The easiest way to keep definitions updated is to create an entry in the Windows Task
Scheduler. The Task Scheduler is fussy about the format for the action, which must be an
executable file; an entry might look something like

C:\Windows\py.exe "C:\usr\locall\bin\units\units_cur"

if the Python launcher is in C:\Windows and the script is in C:\usr\local\bin.



	Preface
	Building and Installing units
	Overview
	Configuring configure
	Customizing the Installation
	Administrative Privilege
	Environment Variables for Visual Studio
	Initialization with the Korn Shell
	Adjustment for Different Visual Studio Installations

	``install'' Programs
	Running with Administrative Privilege
	Providing a Manifest File
	Embedding a Manifest in the install Program


	Fine Tuning Makefile
	Behavior of PAGER
	MKS make and Suffix Rules
	Install Program

	Icons and File Association
	MKS units
	Updating Currency Definitions
	Installing Python
	Python and configure
	Running the Updater


