Libidn2

Internationalized Domain Names (IDNA2008)
Version 0.5, 5 May 2011

Simon Josefsson

This manual is for Libidn2 (version 0.5, 5 May 2011), an implementation of IDNA2008
internationalized domain names.

Copyright (©) 2011 Simon Josefsson

Table of Contents

1 Introduction................... 1
2 Library Functions............................... 2
2.1 Header file idn2.h ... 2
2.2 Core FUNCtions.ot e 2
2.3 Locale Functions ...t 3
24 Control Flagso 4
2.5 FError Handling. ... i 4
2.6 Return Codes......couriiiii e e 4
2.7 Memory Handlingo 6
2.8 Version Check....... ... 6
3 Examples............ 8
3.1 LoOKUD « oo 8
3.2 Register. ... 9
4 Invoking idn2.............. 10
41 OPHIOnS . 10
4.2 Environment Variables................. ... i 10
4.3 EXampPIes 10
4.4 Troubleshooting.ccouuuiiii e 11
Interface Index 14

Concept Index.............ooiiiiiiiiii. 15

Chapter 1: Introduction

1 Introduction

Libidn2 is a free software implementation of IDNA2008.

Chapter 2: Library Functions 2

2 Library Functions
Below are the interfaces of the Libidn2 library documented.

2.1 Header file idn2.h
To use the functions documented in this chapter, you need to include the file ‘idn2.h’ like
this:

#include <idn2.h>

2.2 Core Functions

When you have the data encoded in UTF-8 form the direct interfaces to the library are as
follows.

idn2_lookup_u8

int idn2_lookup_u8 (const uint8_t * src, uint8_t ** lookupname, int [Function]
flags)

src: input zero-terminated UTF-8 string in Unicode NFC normalized form.
lookupname: newly allocated output variable with name to lookup in DNS.
flags: optional idn2_flags to modify behaviour.
Perform IDNA2008 lookup string conversion on domain name src, as described in
section 5 of RFC 5891. Note that the input string must be encoded in UTF-8 and be
in Unicode NFC form.

Pass IDN2_NFC_INPUT in flags to convert input to NFC form before further process-
ing. Pass IDN2_ALABEL_ROUNDTRIP in flags to convert any input A-labels to U-labels
and perform additional testing. Multiple flags may be specified by binary or:ing them
together, for example IDN2_NFC_INPUT | IDN2_ALABEL_ROUNDTRIP.

Returns: On successful conversion IDN2_0OK is returned, if the output domain or any
label would have been too long IDN2_T0O0O_BIG_DOMAIN or IDN2_TOO_BIG_LABEL is
returned, or another error code is returned.

idn2_register_u8

int idn2_register_u8 (const uint8-t * ulabel, const uint8_t * [Function]
alabel, uint8_-t ** insertname, int flags)
ulabel: input zero-terminated UTF-8 and Unicode NFC string, or NULL.

alabel: input zero-terminated ACE encoded string (xn-), or NULL.
insertname: newly allocated output variable with name to register in DNS.
flags: optional idn2_flags to modify behaviour.

Perform IDNA2008 register string conversion on domain label ulabel and alabel,
as described in section 4 of RFC 5891. Note that the input ulabel must be encoded
in UTF-8 and be in Unicode NFC form.

Pass IDN2_NFC_INPUT in flags to convert input ulabel to NFC form before further
processing.

Chapter 2: Library Functions 3

It is recommended to supply both ulabel and alabel for better error checking, but
supplying just one of them will work. Passing in only alabel is better than only
ulabel. See RFC 5891 section 4 for more information.

Returns: On successful conversion IDN2_0K is returned, when the given ulabel and
alabel does not match each other IDN2_UALABEL_MISMATCH is returned, when either
of the input labels are too long IDN2_T00_BIG_LABEL is returned, when alabel does
does not appear to be a proper A-label IDN2_INVALID_ALABEL is returned, or another
error code is returned.

2.3 Locale Functions

As a convenience, the following functions are provided that will convert the input from the
locale encoding format to UTF-8 and normalize the string using NFC, and then apply the
core functions described earlier.

idn2_lookup_ul

int idn2_lookup_ul (const char * src, char ** lookupname, int [Function]
flags)
src: input zero-terminated locale encoded string.

lookupname: newly allocated output variable with name to lookup in DNS.
flags: optional idn2_flags to modify behaviour.

Perform IDNA2008 lookup string conversion on domain name src, as described in
section 5 of RFC 5891. Note that the input is assumed to be encoded in the locale’s
default coding system, and will be transcoded to UTF-8 and NFC normalized by this
function.

Pass IDN2_ALABEL_ROUNDTRIP in flags to convert any input A-labels to U-labels and
perform additional testing.

Returns: On successful conversion IDN2_OK is returned, if conversion from locale
to UTF-8 fails then IDN2_ICONV_FAIL is returned, if the output domain or any label
would have been too long IDN2_T00_BIG_DOMAIN or IDN2_TO0O0_BIG_LABEL is returned,
or another error code is returned.

idn2_register_ul

int idn2_register_ul (const char * ulabel, const char * alabel, [Function]
char ** insertname, int flags)
ulabel: input zero-terminated locale encoded string, or NULL.

alabel: input zero-terminated ACE encoded string (xn—-), or NULL.
insertname: newly allocated output variable with name to register in DNS.
flags: optional idn2_flags to modify behaviour.

Perform IDNA2008 register string conversion on domain label ulabel and alabel,
as described in section 4 of RFC 5891. Note that the input ulabel is assumed to be
encoded in the locale’s default coding system, and will be transcoded to UTF-8 and
NFC normalized by this function.

Chapter 2: Library Functions 4

It is recommended to supply both ulabel and alabel for better error checking, but
supplying just one of them will work. Passing in only alabel is better than only
ulabel. See RFC 5891 section 4 for more information.

Returns: On successful conversion IDN2_0K is returned, when the given ulabel and
alabel does not match each other IDN2_UALABEL_MISMATCH is returned, when either
of the input labels are too long IDN2_T0O0_BIG_LABEL is returned, when alabel does
does not appear to be a proper A-label IDN2_INVALID_ALABEL is returned, or another
error code is returned.

2.4 Control Flags

The flags parameter can take on the following values, or a bit-wise inclusive or of any
subset of the parameters:

idn2_flags IDN2_NFC_INPUT [Global flag]
Apply NFC normalization on input.

idn2_flags IDN2_ALABEL_ROUNDTRIP [Global flag]
Apply additional round-trip conversion of A-label inputs.

2.5 Error Handling

idn2_strerror

const char * idn2_strerror (int rc) [Function]
rc: return code from another libidn2 function.

Convert internal libidn2 error code to a humanly readable string. The returned
pointer must not be de-allocated by the caller.

Return value: A humanly readable string describing error.
idn2_strerror_name

const char * idn2_strerror_name (int rc) [Function]
rc: return code from another libidn2 function.

Convert internal libidn2 error code to a string corresponding to internal header file
symbols. For example, idn2_strerror_name(IDN2_MALLOC) will return the string
"IDN2_MALLOC™".

The caller must not attempt to de-allocate the returned string.

Return value: A string corresponding to error code symbol.

2.6 Return Codes

The functions normally return 0 on sucess or a negative error code.

idn2_rc IDN2_0K [Return code]
Successful return.

idn2_rc IDN2_MALLOC [Return code]
Memory allocation error.

Chapter 2: Library Functions

idn2_rc IDN2_NO_CODESET

Could not determine locale string encoding format.

idn2_rc IDN2_ICONV_FAIL
Could not transcode locale string to UTF-8.

idn2_rc IDN2_ENCODING_ERROR
Unicode data encoding error.

idn2_rc IDN2_NFC
Error normalizing string.

idn2_rc IDN2_PUNYCODE_BAD_INPUT
Punycode invalid input.

idn2_rc IDN2_PUNYCODE_BIG_OUTPUT
Punycode output buffer too small.

idn2_rc IDN2_PUNYCODE_OVERFLOW
Punycode conversion would overflow.

idn2_rc IDN2_TOO_BIG_DOMAIN
Domain name longer than 255 characters.

idn2_rc IDN2_TOO_BIG_LABEL
Domain label longer than 63 characters.

idn2_rc IDN2_INVALID_ALABEL
Input A-label is not valid.

idn2_rc IDN2_UALABEL_MISMATCH
Input A-label and U-label does not match.

idn2_rc IDN2_NOT_NFC
String is not NFC.

idn2_rc IDN2_2HYPHEN
String has forbidden two hyphens.

idn2_rc IDN2_HYPHEN_STARTEND
String has forbidden starting/ending hyphen.

idn2_rc IDN2_LEADING_COMBINING

String has forbidden leading combining character.

idn2_rc IDN2_DISALLOWED
String has disallowed character.

idn2_rc IDN2_CONTEXTJ
String has forbidden context-j character.

idn2_rc IDN2_CONTEXTJ_NO_RULE
String has context-j character with no rull.

[Return code]

[Return code]

[Return code]

[Return code]

[Return code]

[Return code]

[Return code]

[Return code]

[Return code]

[Return code]

[Return code]

[Return code]

[Return code]

[Return code]

[Return code]

[Return code]

[Return code]

[Return code]

Chapter 2: Library Functions

idn2_rc IDN2_CONTEXTO
String has forbidden context-o character.

idn2_rc IDN2_CONTEXTO_NO_RULE
String has context-o character with no rull.

idn2_rc IDN2_UNASSIGNED
String has forbidden unassigned character.

idn2_rc IDN2_BIDI

String has forbidden bi-directional properties.

2.7 Memory Handling

idn2_free

void idn2_free (void * ptr)
ptr: pointer to deallocate

Call free(3) on the given pointer.

[Return code]

[Return code]

[Return code]

[Return code]

[Function]

This function is typically only useful on systems where the library malloc heap is
different from the library caller malloc heap, which happens on Windows when the

library is a separate DLL.

2.8 Version Check

It is often desirable to check that the version of Libidn2 used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want

to check that the version is okay right after program startup.

idn2_check_version

const char * idn2_check_version (const char * req_version)

[Function]

req_version: version string to compare with, or NULL.

Check IDN2 library version. This function can also be used to read out the version
of the library code used. See IDN2_VERSION for a suitable req_version string, it
corresponds to the idn2.h header file version. Normally these two version numbers
match, but if you are using an application built against an older libidn2 with a newer
libidn2 shared library they will be different.

Return value: Check that the version of the library is at minimum the one given as
a string in req_version and return the actual version string of the library; return
NULL if the condition is not met. If NULL is passed to this function no check is done
and only the version string is returned.

The normal way to use the function is to put something similar to the following first in
your main:

if (!'idn2_check_version (IDN2_VERSION))
{

Chapter 2: Library Functions

printf ("idn2_check_version() failed:\n"
"Header file incompatible with shared library.\n");
exit (EXIT_FAILURE);
X

Chapter 3: Examples 8

3 Examples

This chapter contains example code which illustrate how Libidn2 is used when you write
your own application.

3.1 Lookup

This example demonstrates how a domain name is processed before it is lookup in the DNS.

#include <stdio.h> /* printf, fflush, fgets, stdin, perror, fprintf */

#include <string.h> /* strlen */

#include <locale.h> /* setlocale */

#include <stdlib.h> /* free */

#include <idn2.h> /* idn2_lookup_ul, IDN2_OK, idn2_strerror, idn2_strerror_name */

int
main (int argc, char *argv[])
{

int rc;

char src[BUFSIZ];
char *lookupname;

setlocale (LC_ALL, "");
printf ("Enter (possibly non-ASCII) domain name to lookup: ");

fflush (stdout);
if (!'fgets (src, sizeof (src), stdin))

{
perror ("fgets");
return 1;
}
src[strlen (src) - 1] = ’\0’;

rc = idn2_lookup_ul (src, &lookupname, O);
if (rc '= IDN2_OK)
{
fprintf (stderr, "error: ¥%s (%s, %d)\n",
idn2_strerror (rc), idn2_strerror_name (rc), rc);
return 1;

}
printf ("IDNA2008 domain name to lookup in DNS: ¥%s\n", lookupname) ;
free (lookupname) ;

return O;

Chapter 3: Examples 9

3.2 Register

This example demonstrates how a domain label is processed before it is registered in the
DNS.

#include <stdio.h> /* printf, fflush, fgets, stdin, perror, fprintf */

#include <string.h> /* strlen */

#include <locale.h> /* setlocale */

#include <stdlib.h> /* free %/

#include <idn2.h> /* idn2_register_ul, IDN2_0K, idn2_strerror, idn2_strerror_name */

int
main (int argc, char *argv[])
{

int rc;

char src[BUFSIZ];
char *insertname;

setlocale (LC_ALL, "");
printf ("Enter (possibly non-ASCII) label to register: ");

fflush (stdout);
if (!fgets (src, sizeof (src), stdin))

{
perror ("fgets");
return 1;
}
src[strlen (src) - 1] = ’\0’;

rc = idn2_register_ul (src, NULL, &insertname, 0);
if (rc '= IDN2_0K)
{
fprintf (stderr, "error: %s (%s, %d)\n",
idn2_strerror (rc), idn2_strerror_name (rc), rc);
return 1;

}
printf ("IDNA2008 label to register in DNS: %s\n", insertname);
free (insertname);

return O;

Chapter 4: Invoking idn2 10

4 Invoking idn2

idn2 translates internationalized domain names to the IDNA2008 encoded format, either
for lookup or registration.

If strings are specified on the command line, they are used as input and the computed
output is printed to standard output stdout. If no strings are specified on the command line,
the program read data, line by line, from the standard input stdin, and print the computed
output to standard output. What processing is performed (e.g., lookup or register) is
indicated by options. If any errors are encountered, the execution of the applications is
aborted.

All strings are expected to be encoded in the preferred charset used by your locale.
Use --debug to find out what this charset is. On POSIX systems you may use the LANG
environment variable to specify a different locale.

To process a string that starts with -, for example -foo, use -- to signal the end of
parameters, as in idn2 -r -- -foo.

4.1 Options

idn2 recognizes these commands:

-h, --help Print help and exit
-V, —--version Print version and exit
-1, --lookup Lookup domain name (default)
-r, —--register Register label
--debug Print debugging information
--quiet Silent operation

4.2 Environment Variables

On POSIX systems the LANG environment variable can be used to override the system
locale for the command being invoked. The system locale may influence what character set
is used to decode data (i.e., strings on the command line or data read from the standard
input stream), and to encode data to the standard output. If your system is set up correctly,
however, the application will use the correct locale and character set automatically. Example
usage:

$ LANG=en_US.UTF-8 idn2

4.3 Examples

Standard usage, reading input from standard input and disabling license and usage instruc-
tions:

Chapter 4: Invoking idn2 11

jas@latte:~$ idn2 --quiet
raksmorgas.se
xn--rksmrgs-5waolo.se

Reading input from the command line:

jas@latte:”$ idn2 ridksmdrgas.se blabzrgrgd.no
xn--rksmrgs—-5waolo.se

xn--blbrgrd-fxak7p.no

jas@latte:"$

Testing the IDNA2008 Register function:

jas@latte:~$ idn2 --register fuBball
xn--fuball-cta
jas@latte:"$

4.4 Troubleshooting

Getting character data encoded right, and making sure Libidn2 use the same encoding, can
be difficult. The reason for this is that most systems may encode character data in more
than one character encoding, i.e., using UTF-8 together with IS0-8859-1 or IS0-2022-JP.
This problem is likely to continue to exist until only one character encoding come out as
the evolutionary winner, or (more likely, at least to some extents) forever.

The first step to troubleshooting character encoding problems with Libidn2 is to use
the ‘--debug’ parameter to find out which character set encoding ‘idn2’ believe your locale
uses.

jas@latte:~$ idn2 --debug --quiet ""
Charset: UTF-8

jas@latte:~$

If it prints ANSI_X3.4-1968 (i.e., US-ASCII), this indicate you have not configured your
locale properly. To configure the locale, you can, for example, use ‘LANG=sv_SE.UTF-8;
export LANG’ at a /bin/sh prompt, to set up your locale for a Swedish environment using
UTF-8 as the encoding.

Sometimes ‘idn2’ appear to be unable to translate from your system locale into UTF-8
(which is used internally), and you will get an error message like this:

idn2: lookup: could not convert string to UTF-8

One explanation is that you didn’t install the ‘iconv’ conversion tools. You can find it as
a standalone library in GNU Libiconv (http://www.gnu.org/software/libiconv/). On
many GNU/Linux systems, this library is part of the system, but you may have to install
additional packages to be able to use it.

Another explanation is that the error is correct and you are feeding ‘idn2’ invalid data.
This can happen inadvertently if you are not careful with the character set encoding you use.
For example, if your shell run in a IS0-8859-1 environment, and you invoke ‘idn2’ with
the ‘LANG’ environment variable as follows, you will feed it IS0-8859-1 characters but force
it to believe they are UTF-8. Naturally this will lead to an error, unless the byte sequences
happen to be valid UTF-8. Note that even if you don’t get an error, the output may be

http://www.gnu.org/software/libiconv/

Chapter 4: Invoking idn2

12

incorrect in this situation, because IS0-8859-1 and UTF-8 does not in general encode the

same characters as the same byte sequences.

jas@latte:~$ idn2 --quiet --debug ""

Charset: IS0-8859-1

jas@latte:~$ LANG=sv_SE.UTF-8 idn2 --debug r&ksmorgas

Charset:
input [0]
input [1]
input [2]
input [3]
input [4]
input [5]
input [6]
input [7]
input [8]
input [9]
input [10]
input [11]
input [12]
input [13]
input [14]

UTF-8

0x72
0xc3
Oxa4d

= 0xc3
= Oxa4d

0x6b
0x73

= 0x6d
= 0xc3

0xb6
0x72
0x67
0xc3
Oxab
0x73

UCS-4 input[0] =
UCS-4 input[1] =
UCS-4 input[2] =
UCS-4 input[3] =
UCS-4 input[4] =
UCS-4 input[5] =
UCS-4 input[6] =
UCS-4 input[7] =
UCS-4 input[8] =
UCS-4 input[9] =

UCS-4 input[10] = U+0073

output [0]
output [1]
output [2]
output [3]
output [4]
output [5]
output [6]
output [7]
output [8]
output [9]

output [10]
output[11]
output [12]

0x72
0xc3

= Oxa4d
= 0xc3
= Oxa4
= 0x6b
= 0x73
= 0x6d
= 0xc3

0xb6
= 0x72
0x67
0xc3

U+0072
U+00e4
U+00e4
U+006b
U+0073
U+006d
U+00£6
U+0072
U+0067
U+00eb

Chapter 4: Invoking idn2

output [13]
output [14]

UCs-4
UCs-4
UCs-4
UCs-4
UCs-4
UCs-4
UCs-4
UCs-4
UcCs-4
UCs-4
UCs-4

Oxab
0x73
output [0] =
output[1] =
output[2] =
output [3] =
output [4] =
output [5] =
output [6] =
output [7] =
output [8] =
output[9] =

output [10] = U+0073

U+0072
U+00e4
U+00e4
U+006Db
U+0073
U+006d
U+00£6
U+0072
U+0067
U+00eb5

xn--rksmrgs—-5waap8p
jas@latte:"$

The sense moral here is to forget about ‘LANG’ (instead, configure your system locale
properly) unless you know what you are doing, and if you want to use ‘LANG’, do it carefully

and after verifying with ‘~-debug’ that you get the desired results.

13

Interface

Index

Interface Index

idn2_check_version

idn2_free

idn2_lookup_u8............l
idn2_lookup_ul.......... il

14
idn2_register_u8.......... ... il 2
idn2_register_ul............iiiiiiiiiiiiiaann 3
1dn2_Strerror 4
idn2_strerror_namec.iuinininnn. 4

Concept Index

Concept Index

C

command line

E

Examples.........ooooiiiii i

15

	Introduction
	Library Functions
	Header file idn2.h
	Core Functions
	Locale Functions
	Control Flags
	Error Handling
	Return Codes
	Memory Handling
	Version Check

	Examples
	Lookup
	Register

	Invoking idn2
	Options
	Environment Variables
	Examples
	Troubleshooting

	Interface Index
	Concept Index

